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Abstract—A unified treatment of several least squares
(LS) algorithms is presented for bearings-only tracking of a
target moving at constant acceleration. The close link be-
tween the maximum likelihood (ML) estimator and other
nonlinear and “linearized” LS algorithms is explored un-
der the assumption of Gaussian bearing noise. In this con-
text, a new asymptotically unbiased closed-form instrumen-
tal variables (IV) algorithm is derived. Reduced-bias total
least squares (TLS) and constrained TLS (CTLS) algorithms
are developed. The equivalence of the ML algorithm to the
structured TLS (STLS) algorithm is established. Simulation
examples are provided to demonstrate the improved perfor-
mance of the IV and TLS estimators vis-à-vis the pseudolin-
ear estimator.

I. INTRODUCTION

The paper presents a unified treatment of several classical
and new LS algorithms for bearings-only tracking of a tar-
get moving at constant acceleration. Tracking of constant-
velocity targets and stationary target localization are spe-
cial cases of constant-acceleration target tracking. The
key to target tracking is the estimation of target trajectory
from noisy bearing and own-ship location measurements.
For targets moving at constant acceleration, the target tra-
jectory is defined by the target motion parameters, viz.,
position, velocity and acceleration. Target tracking has
many civilian and military applications, such as air traffic
control, surveillance, etc.

Firstly we derive the classical ML estimator for the tar-
get motion parameters. The ML estimator becomes a non-
linear LS estimator for zero-mean Gaussian distributed
bearing noise. While the ML estimator is optimal, it does
not have a closed-form solution because of the nonlinear
relationship between the measurements and the unknown
parameters. Based on the classical ML estimator, a lin-
earized weighted LS estimator is derived under the as-
sumption of small bearing noise, which yields a closed-
form solution. This algorithm is simply an extension of
the target localization algorithm developed by Stansfield
in [1] to tracking of moving targets. A pseudolinear es-
timator is obtained from the Stansfield estimator by re-
moving the weighting matrix. An alternative derivation
for the pseudolinear estimator based on orthogonal vec-
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entation yields the equivalent orthogonal vectors
imator. The linear LS estimators are known to

[2]. A new closed-form asymptotically unbi-
estimator is proposed in the paper. The instru-
riables are obtained from another estimate such
TLS. Unlike the algorithms in [2, 3], no recur-
putations are required for the new IV estimator.
CTLS estimators are developed to improve the
nce of the OV estimator by attempting to miti-
rs in both the system matrix and the data vec-
uctured TLS estimator is also formulated and the
ce between the STLS and ML estimators is es-
. The performance improvement achieved by the
IV estimators compared with the OV estimator is
ated with simulation examples. The simulations
the capability of the IV estimator to outperform

stimator.

II. PROBLEM FORMULATION

dimensional target tracking problem using bear-
urements only is depicted in Fig. 1. The objective
gs-only target tracking is to identify the target lo-

from noisy bearing and observer position mea-
s over a finite time interval 0 ≤ k ≤ N − 1.
. 1, the relation between the bearing angle, ob-

sition and target location is given by the follow-
near equation

θk = tan−1 ∆yk

∆xk
, k = 0, . . . , N − 1 (1)

yk � py,k − ry,k, ∆xk � px,k − rx,k, pk =
k]T is the target location vector and rk = [rx,k,
the observer position at k.
ake the following assumptions about the target
roblem:

e target is moving at constant acceleration. Let
and v0 denote the target position and velocity
tor at k = 0, and a be the constant target ac-
eration vector. Assuming that the bearing and
erver position measurements are taken at reg-
r time instants tk = kT where T is the sam-
ng interval, the target location at time tk, k =
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Fig. 1. Two-dimensional bearings-only target tracking ge-
ometry.

0, 1, . . . , N − 1 is given by [4]

pk = p0 + tkv0 +
t2k
2

a (2a)

= Mk ξ (2b)

where

Mk =
[
1 0 tk 0 1

2 t2k 0
0 1 0 tk 0 1

2 t2k

]

and

ξ =


p0

v0

a




is the 6× 1 target motion parameter vector to be es-
timated. Given an estimate of ξ, the target locations
can be obtained from (2).

• The bearing measurements are subject to indepen-
dent zero-mean Gaussian noise:

θ̃k = θk + nk, nk ∼ N (0, σ2
nk

) (3)

where the θ̃k, k = 0, . . . , N − 1, are the bearing
measurements available for target tracking, and nk

is a Gaussian random variable with zero mean and
variance σ2

nk
.

• The observer position measurements are subject to
independent bivariate Gaussian noise:

r̃k = rk + wk, wk ∼ N (0, C) (4)

where the covariance matrix C is diagonal, i.e., the
errors in x and y coordinates of the observer posi-
tion measurements are independent.

• The observer trajectory is such that the target is ob-
servable.
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stimator

g that the observer position errors are zero, that
0 in (4), and using the Gaussianity assumption
g measurement noise, the likelihood function for
g measurements can be written as

=
1

(2π)N/2|K|1/2

× exp
{
−1

2
(θ̃ − θ(ξ))T K−1(θ̃ − θ(ξ))

}

θ̃ = [θ̃0, θ̃2, . . . , θ̃N−1]T

1 vector of noisy bearing measurements,

θ(ξ) = [θ0, θ2, . . . , θN−1]T

1 vector of bearing angles which are dependent
rget locations pk and the target motion parame-
ough (1) and (2), K = diag(σ2

n0
, . . . , σ2

nN−1
)

× N diagonal covariance matrix of the bearing
ent errors, and |K| is the determinant of K.
aximum likelihood estimator of the target mo-
eters ξ̂ML is obtained from maximization of the

d function p(θ̃|ξ) over all possible ξ [5]. To sim-
maximization problem, the log-likelihood func-
ed:

(θ̃|ξ) = −1
2

ln((2π)N |K|)

− 1
2
(θ̃ − θ(ξ))T K−1(θ̃ − θ(ξ)).

at the first term of the log-likelihood function is
ent of ξ, the maximization of the log-likelihood
can be achieved by minimizing the second term
sign inversion, leading to

ξ̂ML = argmin
ξ∈R6

JML(ξ) (5)

L(ξ) is the ML cost function given by

ML(ξ) =
1
2
(θ̃ − θ(ξ))T K−1(θ̃ − θ(ξ)). (6)

inimization of JML(ξ) over ξ is in fact a nonlin-
oblem. The solution to this minimization prob-
es

∂JML(ξ)
∂ξ

∣∣∣∣
ξ=ξ̂ML

= 0. (7)

-form solution to (7) does not exist. This re-
e use of numerical gradient-based search tech-
he gradient-based search techniques will yield a
lution for ξ̂ML if the ML cost function is convex
ique global minimum. The convexity of the ML
tion was stated in [6] without proof.



B. Stansfield Estimator

Assuming that the bearing errors are very small, i.e., θ̃k −
θk ≈ 0, we can write [7]

θ̃k − θk ≈ sin(θ̃k − θk).

Substituting this approximation into (6) yields the follow-
ing cost function

JS(p) =
N−1∑
k=0

1
2σ2

nk

sin2(θ̃k − θk) (8a)

=
1
2
(Fξ − b)T W−1(Fξ − b) (8b)

where F is the N × 6 matrix defined by

F =




aT
0 M0

aT
1 M1

...
aT

N−1MN−1




N×6

, ak =
[

sin θ̃k

− cos θ̃k

]
, (9)

b is the N × 1 vector

b =




aT
0 r0

aT
1 r1

...
aT

N−1rN−1


 , (10)

and W is the N × N diagonal weighting vector

W =



d2
0σ

2
n0

0
d2
1σ

2
n1

. . .
0 d2

N−1σ
2
nN−1


 . (11)

Here dk =
√

(∆xk)2 + (∆yk)2 denotes the target range
from the observer location at time instant k. The weight-
ing matrix is therefore dependent on ξ.

To obtain a linear LS solution to the bearings-only tar-
get tracking problem, the dependence of W on the target
motion parameter vector ξ is ignored by using the true
range values between the observer and the target, assum-
ing that this information is available. This simplification
allows us to treat (8b) as a weighted LS problem with a
closed-form solution given by

ξ̂S = arg min
ξ∈R6

JS(ξ) (12a)

= (F T W−1F )−1F T W−1b. (12b)

This estimator is an extension of the Stansfield target lo-
cation estimator [1] to moving targets. We assume that
the matrix F is full-rank as required by the observability
assumption.

C. OV Estimator

In (3) we formulated the target tracking problem by refer-
ring to a statistical model for the bearing measurement er-
rors. Alternatively we can establish an orthogonal vector
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ionship between the true and measured bearing
s shown in Fig. 2 where s̃k is the noisy (mea-
aring vector emanating from the observer posi-
d makes an angle of θ̃k with the x-axis, sk is the

ector between rk and the target pk, and ek is the
al error vector (note that eT

k s̃k = 0).
Fig. 2 we have

pk = rk + sk (13a)

= rk + s̃k + ek (13b)

orthogonal vector ek is defined by

ek = ‖sk‖2 sin(θ̃k − θk)
[

sin θ̃k

− cos θ̃k

]
(14)

= dk sin nk ak. (15)

‖sk‖2 is the range between the observer vector
e target pk defined after (11), nk = θ̃k − θk is
ian bearing noise in (3), and ak is the unit vector
al to s̃k defined in (9).
minate the noisy bearing vector s̃k from the equa-
tiply (13b) through with the transpose of the or-
unit vector ak, yielding

aT
k pk = aT

k rk + ηk (16)

= dk sinnk is a zero-mean nonlinear Gaussian
ncatenating (16) for k = 0, . . . , N − 1, we get

Fξ = b + η (17)

and b were defined in (9) and (10), respectively,
[η0, . . . , ηN−1]T . An LS solution to (17) is given

ξ̂LS = arg min
ξ∈R6

‖Fξ − b‖2
2 (18a)

= (F T F )−1F T b (18b)

referred to as the orthogonal vectors (OV) esti-
the pseudolinear estimator [2].
r the small bearing error assumption (i.e., nk ≈
rrors ηk can be approximated by ηk ≈ dknk



which suggests a Gaussian ηk with variance d2
kσ2

nk
. To

handle errors ηk with different variances, a weighted LS
solution can be constructed:

argmin
ξ∈R6

‖W−1/2(Fξ − b)‖2
2

which is identical to the Stansfield solution in (12).
The diagonal weighting matrix W aims to improve

the LS solution by adjusting the contributions of equations
concatenated in (17) according to their noise variances.
The diagonal entries of W−1/2 (i.e., the weights) are de-
termined from the reciprocal of noise standard deviations.
If the range information dk is not available, the OV esti-
mator is preferred over the Stansfield estimator as it does
not require the use of the weighting matrix. In practical
applications, the range information for the target is not
usually available. In the absence of this, the weighting
matrix is typically replaced by an identity matrix (assum-
ing identical bearing noise variances), which reduces the
Stansfield estimator to the OV estimator.

D. IV Estimator

The mean of the OV estimate is

E{ξ̂LS} = ξ − E{(F T F )−1F T η}
where −E{(F T F )−1F T η} is the estimation bias. Even
though we have E{η} = 0, the estimation bias is gener-
ally non-zero because F and η are correlated (the bearing
noise nk appears in both F and η) [8]. The OV solution
is obtained from the normal equations

F T F ξ̂LS = F T b.

Since the reason for the bias is the correlation between
F and η, we can consider the following modified normal
equations:

GT F ξ̂IV = GT b

where G is the matrix of instrumental variables. If G is
chosen such that E{GT F } is nonsingular and E{GT η} =
0, then ξ̂IV will be asymptotically unbiased, i.e., E{ξ̂LS} =
ξ as N → ∞.

A simple and appealing choice for the instrumental
variable matrix G is first to obtain an estimate for the tar-
get motion parameters using one of the LS algorithms. In
view of its improved estimation performance, we favour
the TLS solution ξ̂TLS which is discussed in the next sec-
tion. The target location estimates p̂k = [p̂x,k, p̂y,k]T are
then obtained from (2), using ξ̂TLS. Given the p̂k, we can
construct the instrumental variables matrix:

G =




âT
0 M0/d̂2

0σ
2
n0

...
âT

N−1MN−1/d̂2
N−1σ

2
nN−1


 , âk =

[
sin θ̂k

− cos θ̂k

]

where d̂k = ‖p̂k − rk‖2 and θ̂k = tan−1 p̂y,k−ry,k

p̂x,k−rx,k
. The

asymptotically unbiased IV estimator is then given by

ξ̂IV = (GT F )−1GT b.
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on with all LS solutions, the OV estimator im-
sumes that only b is subject to error. In fact, be-

the presence of errors in bearing measurements,
matrix F is also subject to error. To improve

acy of the OV estimator, the concept of total least
TLS) can be invoked to mitigate errors in both F
. Formally, the TLS estimate ξ̂TLS is given by the
of the following constrained optimization prob-
11]:

min
(F +∆)ξ̂TLS=b+δ

‖L[∆,−δ]T ‖F (19)

= diag(l1, . . . , lN) is an N×N diagonal weight-
ix, T = diag(t1, . . . , t7) is a 7 × 7 diagonal

matrix, and ‖ · ‖F denotes the Frobenius norm.
g to the optimization problem in (19), the TLS
s obtained by adding minimal perturbations to F
that the perturbed matrix equation is consistent.
LS solution can be obtained from a singular value
sition (SVD) of the augmented N × 7 matrix
]T :

L[F ,−b]T = UΣV T (20a)

=
7∑

i=1

σiuiv
T
i (20b)

= [u1, . . . , u7] is an N × 7 unitary matrix, Σ =
. . . , σ7) is the 7 × 7 diagonal matrix of ordered
values (i.e., σ1 ≥ · · · ≥ σ7 > 0), and V =
v7] is a 7 × 7 unitary matrix. The TLS estimate
y

ξ̂TLS =
1

t7v77




t1v17

...
t6v67


 (21)

= [v17, . . . , v77]T is the seventh column of V .
(21) assumes that the smallest singular value is

.e., σ6 > σ7. This assumption may be violated
ccasions. If this happens, alternative solutions
tained (see [11] for details).
LS solution in general exhibits smaller estima-

than the LS solution [12]. In the absence of bear-
bserver location errors, we get F oξ = bo where
o are obtained from true bearing angles and ob-
ations. The noisy matrix F and vector b are re-
o and bo through F = F o+∆o and b = bo+δo

r nk ≈ 0,

≈




νT
0 M0

...
νT

N−1MN−1


 , νk = nk

[
cos θk

sin θk

]

≈




νT
0 r0

...
νT

N−1rN−1


 .



The weighting matrices can be chosen by taking into ac-
count the error variances in F and b. If we set L = I and
T = diag(1, 1, ε), where ε > 0, and let ε → 0, the TLS
solution converges to the LS solution.

F. CTLS Estimator

The perturbed system matrix F + ∆ and data vector b +
δ that result from TLS do not retain the structure of the
original system matrix and data vector defined in (9) and
(10). The accuracy of the TLS estimate can be improved
if the TLS perturbations are forced to obey the structure of
the system matrix and data vector. The imposition of these
constraints on the TLS solution leads to a constrained TLS
(CTLS) problem that can be formulated as

min
∆, δ

‖L[∆,−δ]T ‖F (22a)

subject to

(F + ∆)ξ̂CTLS = b + δ (22b)

F + ∆ =




ǎT
0 0 0

ǎT
1 t1ǎ

T
1

t21
2 ǎT

1
...

ǎT
N−1 tN−1ǎ

T
N−1

t2N−1
2 ǎT

N−1


 (22c)

‖ǎi‖2 = 1, i = 0, . . . , N − 1 (22d)

b + δ =




ǎT
0 r0

...
ǎT

N−1rN−1


 (22e)

A detailed treatment of CTLS can be found in [9].
A closed-form solution to (22) is not available because

of the nonlinearity of constraints. We therefore seek an
iterative numerical solution based on nonlinear program-
ming and the method of successive projections [9]. The
idea behind successive projections is to obtain the TLS so-
lution and then to project it to vectors satisfying the given
constraints using a least-squares criterion, and repeat the
whole procedure until TLS converges to a solution satis-
fying all the constraints.

The method of successive projections was shown to
produce a vector sequence that always contains a subse-
quence that converges to a vector satisfying the constraints
of the optimization problem under some mild conditions
on the projections [13].

G. STLS Estimator

The CTLS algorithm attempts to maintain the structure
of the system matrix and the data vector while perturbing
them to achieve consistency. The constrained optimiza-
tion problem can be recast as

min
δ

‖Lδ‖2
2 (23a)
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F (θ̃ + δ)ξ̂STLS = b(θ̃ + δ) (23b)

is an N × N diagonal weighting matrix and

F (φ) =




aT (φ0)M0

...
aT (φN−1)MN−1


 (24a)

b(φ) =




aT (φ0)r0

...
aT (φN−1)rN−1


 (24b)

[φ0, . . . , φN−1]T and a(φi) = [sin φi,− cosφi]T .
(24) makes explicit the nonlinear parameteriza-

and b in terms of N bearing angles φ. The
ed optimization problem in (23) is known as the
d total least squares problem, and its solution has
ressed in [14, 15].
TLS problem is in fact identical to the ML prob-
equivalence between the STLS and ML solu-

be seen by setting L = K−1/2, which reduces
he minimization of the ML cost function in (6),
writing (1) as

sin θk

cos θk
=

py,k − ry,k

px,k − rx,k

ws that the ML solution satisfies the consistency
t in (23b).

IV. SIMULATION EXAMPLES

ulation examples, we use the target tracking ge-
own in Fig. 3. The observer trajectory consists
nstant velocity legs. The target moves at a con-
leration with motion parameters p0 = [50, 100]T ,
2,−8]T and a = [−0.5, 1.5]T . The bearing
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Fig. 4. Average of target track estimates.

TABLE I MSE (σw = 0.01)

σn OV TLS IV ML
0.1◦ 4.8 3.5 3.0 3.0
0.3◦ 122.0 33.4 28.1 28.2
0.5◦ 554.9 99.1 79.2 79.8
0.7◦ 1267.1 191.5 157.6 159.6
0.9◦ 2128.5 332.8 294.4 302.7

measurements are taken at tk = kT , where T = 0.5
and k = 0, . . . , N − 1. For the moving target, N =
40 bearing measurements are collected by the observer at
marked locations in Fig. 3. The bearing measurements
are subject to i.i.d. zero-mean Gaussian noise with vari-
ance σ2

n. The observer location measurements are cor-
rupted by i.i.d. zero-mean bivariate Gaussian noise with
covariance matrix C = diag(σ2

w , σ2
w). The target motion

parameters were estimated using the OV, TLS, IV and ML
estimators. The results of 1000 Monte Carlo simulations
for mean-squared error (MSE) and initial velocity estima-
tion bias are listed in Tables I and II for different bearing
noise standard deviations σn with the observer position
error standard deviation fixed at σw = 0.01km. Fig. 4
shows the average of target track estimates for different al-
gorithms at σn = 0.5◦. For the target-observer encounter
depicted in Fig. 3, the IV estimator yields the best accu-
racy narrowly outperforming the ML estimator. The TLS
estimator appears to have a much improved performance
compared with the OV estimator.
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